non-abelian, supersoluble, monomial
Aliases: C34.7S3, C32⋊C9⋊5C6, C32⋊3(C9⋊C6), C32⋊2D9⋊5C3, C33.41(C3×S3), C34.C3⋊2C2, C33.30(C3⋊S3), (C3×3- 1+2)⋊2S3, C3.8(C33.S3), C32.2(He3⋊C2), (C3×C9)⋊1(C3×S3), C32.37(C3×C3⋊S3), C3.3(C3×He3⋊C2), SmallGroup(486,147)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C3 — C32⋊C9 — C34.7S3 |
C32⋊C9 — C34.7S3 |
Generators and relations for C34.7S3
G = < a,b,c,d,e,f | a3=b3=c3=d3=f2=1, e3=c, ab=ba, ac=ca, ad=da, eae-1=ac-1, af=fa, bc=cb, ebe-1=bd=db, fbf=b-1, cd=dc, ce=ec, fcf=c-1, de=ed, df=fd, fef=c-1e2 >
Subgroups: 740 in 147 conjugacy classes, 23 normal (11 characteristic)
C1, C2, C3, C3, S3, C6, C9, C32, C32, C32, D9, C3×S3, C3⋊S3, C3×C6, C3×C9, C3×C9, 3- 1+2, C33, C33, C3×D9, C9⋊C6, S3×C32, C3×C3⋊S3, C32⋊C9, C32⋊C9, C3×3- 1+2, C34, C32⋊2D9, C3×C9⋊C6, C32×C3⋊S3, C34.C3, C34.7S3
Quotients: C1, C2, C3, S3, C6, C3×S3, C3⋊S3, C9⋊C6, He3⋊C2, C3×C3⋊S3, C3×He3⋊C2, C33.S3, C34.7S3
(1 7 4)(2 5 8)(10 16 13)(11 14 17)
(2 8 5)(3 6 9)(10 16 13)(12 15 18)
(1 4 7)(2 5 8)(3 6 9)(10 13 16)(11 14 17)(12 15 18)
(1 7 4)(2 8 5)(3 9 6)(10 13 16)(11 14 17)(12 15 18)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)
(1 17)(2 16)(3 15)(4 14)(5 13)(6 12)(7 11)(8 10)(9 18)
G:=sub<Sym(18)| (1,7,4)(2,5,8)(10,16,13)(11,14,17), (2,8,5)(3,6,9)(10,16,13)(12,15,18), (1,4,7)(2,5,8)(3,6,9)(10,13,16)(11,14,17)(12,15,18), (1,7,4)(2,8,5)(3,9,6)(10,13,16)(11,14,17)(12,15,18), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18), (1,17)(2,16)(3,15)(4,14)(5,13)(6,12)(7,11)(8,10)(9,18)>;
G:=Group( (1,7,4)(2,5,8)(10,16,13)(11,14,17), (2,8,5)(3,6,9)(10,16,13)(12,15,18), (1,4,7)(2,5,8)(3,6,9)(10,13,16)(11,14,17)(12,15,18), (1,7,4)(2,8,5)(3,9,6)(10,13,16)(11,14,17)(12,15,18), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18), (1,17)(2,16)(3,15)(4,14)(5,13)(6,12)(7,11)(8,10)(9,18) );
G=PermutationGroup([[(1,7,4),(2,5,8),(10,16,13),(11,14,17)], [(2,8,5),(3,6,9),(10,16,13),(12,15,18)], [(1,4,7),(2,5,8),(3,6,9),(10,13,16),(11,14,17),(12,15,18)], [(1,7,4),(2,8,5),(3,9,6),(10,13,16),(11,14,17),(12,15,18)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18)], [(1,17),(2,16),(3,15),(4,14),(5,13),(6,12),(7,11),(8,10),(9,18)]])
G:=TransitiveGroup(18,171);
(2 8 5)(3 6 9)(10 13 16)(12 18 15)(19 22 25)(21 27 24)
(1 7 4)(2 12 21)(3 25 10)(5 15 24)(6 19 13)(8 18 27)(9 22 16)(11 17 14)(20 26 23)
(1 4 7)(2 5 8)(3 6 9)(10 13 16)(11 14 17)(12 15 18)(19 22 25)(20 23 26)(21 24 27)
(1 14 26)(2 15 27)(3 16 19)(4 17 20)(5 18 21)(6 10 22)(7 11 23)(8 12 24)(9 13 25)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)
(2 9)(3 8)(4 7)(5 6)(10 18)(11 17)(12 16)(13 15)(19 24)(20 23)(21 22)(25 27)
G:=sub<Sym(27)| (2,8,5)(3,6,9)(10,13,16)(12,18,15)(19,22,25)(21,27,24), (1,7,4)(2,12,21)(3,25,10)(5,15,24)(6,19,13)(8,18,27)(9,22,16)(11,17,14)(20,26,23), (1,4,7)(2,5,8)(3,6,9)(10,13,16)(11,14,17)(12,15,18)(19,22,25)(20,23,26)(21,24,27), (1,14,26)(2,15,27)(3,16,19)(4,17,20)(5,18,21)(6,10,22)(7,11,23)(8,12,24)(9,13,25), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27), (2,9)(3,8)(4,7)(5,6)(10,18)(11,17)(12,16)(13,15)(19,24)(20,23)(21,22)(25,27)>;
G:=Group( (2,8,5)(3,6,9)(10,13,16)(12,18,15)(19,22,25)(21,27,24), (1,7,4)(2,12,21)(3,25,10)(5,15,24)(6,19,13)(8,18,27)(9,22,16)(11,17,14)(20,26,23), (1,4,7)(2,5,8)(3,6,9)(10,13,16)(11,14,17)(12,15,18)(19,22,25)(20,23,26)(21,24,27), (1,14,26)(2,15,27)(3,16,19)(4,17,20)(5,18,21)(6,10,22)(7,11,23)(8,12,24)(9,13,25), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27), (2,9)(3,8)(4,7)(5,6)(10,18)(11,17)(12,16)(13,15)(19,24)(20,23)(21,22)(25,27) );
G=PermutationGroup([[(2,8,5),(3,6,9),(10,13,16),(12,18,15),(19,22,25),(21,27,24)], [(1,7,4),(2,12,21),(3,25,10),(5,15,24),(6,19,13),(8,18,27),(9,22,16),(11,17,14),(20,26,23)], [(1,4,7),(2,5,8),(3,6,9),(10,13,16),(11,14,17),(12,15,18),(19,22,25),(20,23,26),(21,24,27)], [(1,14,26),(2,15,27),(3,16,19),(4,17,20),(5,18,21),(6,10,22),(7,11,23),(8,12,24),(9,13,25)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27)], [(2,9),(3,8),(4,7),(5,6),(10,18),(11,17),(12,16),(13,15),(19,24),(20,23),(21,22),(25,27)]])
G:=TransitiveGroup(27,146);
39 conjugacy classes
class | 1 | 2 | 3A | 3B | 3C | 3D | 3E | 3F | ··· | 3K | 3L | ··· | 3T | 6A | ··· | 6H | 9A | ··· | 9I |
order | 1 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | ··· | 3 | 3 | ··· | 3 | 6 | ··· | 6 | 9 | ··· | 9 |
size | 1 | 27 | 1 | 1 | 2 | 2 | 2 | 3 | ··· | 3 | 6 | ··· | 6 | 27 | ··· | 27 | 18 | ··· | 18 |
39 irreducible representations
dim | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 3 | 6 | 6 |
type | + | + | + | + | + | ||||||
image | C1 | C2 | C3 | C6 | S3 | S3 | C3×S3 | C3×S3 | He3⋊C2 | C9⋊C6 | C34.7S3 |
kernel | C34.7S3 | C34.C3 | C32⋊2D9 | C32⋊C9 | C3×3- 1+2 | C34 | C3×C9 | C33 | C32 | C32 | C1 |
# reps | 1 | 1 | 2 | 2 | 3 | 1 | 6 | 2 | 12 | 3 | 6 |
Matrix representation of C34.7S3 ►in GL6(𝔽19)
7 | 0 | 0 | 0 | 0 | 12 |
0 | 11 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 7 | 0 | 12 |
0 | 0 | 0 | 0 | 11 | 1 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 7 |
0 | 7 | 0 | 0 | 0 | 0 |
0 | 0 | 11 | 0 | 0 | 8 |
0 | 0 | 0 | 1 | 0 | 7 |
0 | 0 | 0 | 0 | 11 | 8 |
0 | 0 | 0 | 0 | 0 | 7 |
11 | 0 | 0 | 0 | 0 | 8 |
0 | 11 | 0 | 0 | 0 | 8 |
0 | 0 | 11 | 0 | 0 | 8 |
0 | 0 | 0 | 7 | 0 | 0 |
0 | 0 | 0 | 0 | 7 | 0 |
0 | 0 | 0 | 0 | 0 | 7 |
7 | 0 | 0 | 0 | 0 | 0 |
0 | 7 | 0 | 0 | 0 | 0 |
0 | 0 | 7 | 0 | 0 | 0 |
0 | 0 | 0 | 7 | 0 | 0 |
0 | 0 | 0 | 0 | 7 | 0 |
0 | 0 | 0 | 0 | 0 | 7 |
0 | 0 | 11 | 12 | 0 | 8 |
1 | 0 | 0 | 12 | 0 | 7 |
0 | 1 | 0 | 12 | 0 | 7 |
0 | 0 | 0 | 12 | 1 | 7 |
0 | 0 | 0 | 12 | 0 | 7 |
0 | 0 | 0 | 13 | 0 | 7 |
0 | 0 | 18 | 1 | 0 | 0 |
0 | 0 | 18 | 0 | 1 | 0 |
0 | 0 | 18 | 0 | 0 | 0 |
1 | 0 | 18 | 0 | 0 | 0 |
0 | 1 | 18 | 0 | 0 | 0 |
0 | 0 | 10 | 0 | 0 | 1 |
G:=sub<GL(6,GF(19))| [7,0,0,0,0,0,0,11,0,0,0,0,0,0,1,0,0,0,0,0,0,7,0,0,0,0,0,0,11,0,12,1,0,12,1,1],[1,0,0,0,0,0,0,7,0,0,0,0,0,0,11,0,0,0,0,0,0,1,0,0,0,0,0,0,11,0,7,0,8,7,8,7],[11,0,0,0,0,0,0,11,0,0,0,0,0,0,11,0,0,0,0,0,0,7,0,0,0,0,0,0,7,0,8,8,8,0,0,7],[7,0,0,0,0,0,0,7,0,0,0,0,0,0,7,0,0,0,0,0,0,7,0,0,0,0,0,0,7,0,0,0,0,0,0,7],[0,1,0,0,0,0,0,0,1,0,0,0,11,0,0,0,0,0,12,12,12,12,12,13,0,0,0,1,0,0,8,7,7,7,7,7],[0,0,0,1,0,0,0,0,0,0,1,0,18,18,18,18,18,10,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1] >;
C34.7S3 in GAP, Magma, Sage, TeX
C_3^4._7S_3
% in TeX
G:=Group("C3^4.7S3");
// GroupNames label
G:=SmallGroup(486,147);
// by ID
G=gap.SmallGroup(486,147);
# by ID
G:=PCGroup([6,-2,-3,-3,-3,-3,-3,1190,548,338,867,735,3244]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^3=b^3=c^3=d^3=f^2=1,e^3=c,a*b=b*a,a*c=c*a,a*d=d*a,e*a*e^-1=a*c^-1,a*f=f*a,b*c=c*b,e*b*e^-1=b*d=d*b,f*b*f=b^-1,c*d=d*c,c*e=e*c,f*c*f=c^-1,d*e=e*d,d*f=f*d,f*e*f=c^-1*e^2>;
// generators/relations