Copied to
clipboard

G = C34.7S3order 486 = 2·35

7th non-split extension by C34 of S3 acting faithfully

non-abelian, supersoluble, monomial

Aliases: C34.7S3, C32:C9:5C6, C32:3(C9:C6), C32:2D9:5C3, C33.41(C3xS3), C34.C3:2C2, C33.30(C3:S3), (C3x3- 1+2):2S3, C3.8(C33.S3), C32.2(He3:C2), (C3xC9):1(C3xS3), C32.37(C3xC3:S3), C3.3(C3xHe3:C2), SmallGroup(486,147)

Series: Derived Chief Lower central Upper central

C1C3C32:C9 — C34.7S3
C1C3C32C33C32:C9C34.C3 — C34.7S3
C32:C9 — C34.7S3
C1C3

Generators and relations for C34.7S3
 G = < a,b,c,d,e,f | a3=b3=c3=d3=f2=1, e3=c, ab=ba, ac=ca, ad=da, eae-1=ac-1, af=fa, bc=cb, ebe-1=bd=db, fbf=b-1, cd=dc, ce=ec, fcf=c-1, de=ed, df=fd, fef=c-1e2 >

Subgroups: 740 in 147 conjugacy classes, 23 normal (11 characteristic)
C1, C2, C3, C3, S3, C6, C9, C32, C32, C32, D9, C3xS3, C3:S3, C3xC6, C3xC9, C3xC9, 3- 1+2, C33, C33, C3xD9, C9:C6, S3xC32, C3xC3:S3, C32:C9, C32:C9, C3x3- 1+2, C34, C32:2D9, C3xC9:C6, C32xC3:S3, C34.C3, C34.7S3
Quotients: C1, C2, C3, S3, C6, C3xS3, C3:S3, C9:C6, He3:C2, C3xC3:S3, C3xHe3:C2, C33.S3, C34.7S3

Permutation representations of C34.7S3
On 18 points - transitive group 18T171
Generators in S18
(1 7 4)(2 5 8)(10 16 13)(11 14 17)
(2 8 5)(3 6 9)(10 16 13)(12 15 18)
(1 4 7)(2 5 8)(3 6 9)(10 13 16)(11 14 17)(12 15 18)
(1 7 4)(2 8 5)(3 9 6)(10 13 16)(11 14 17)(12 15 18)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)
(1 17)(2 16)(3 15)(4 14)(5 13)(6 12)(7 11)(8 10)(9 18)

G:=sub<Sym(18)| (1,7,4)(2,5,8)(10,16,13)(11,14,17), (2,8,5)(3,6,9)(10,16,13)(12,15,18), (1,4,7)(2,5,8)(3,6,9)(10,13,16)(11,14,17)(12,15,18), (1,7,4)(2,8,5)(3,9,6)(10,13,16)(11,14,17)(12,15,18), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18), (1,17)(2,16)(3,15)(4,14)(5,13)(6,12)(7,11)(8,10)(9,18)>;

G:=Group( (1,7,4)(2,5,8)(10,16,13)(11,14,17), (2,8,5)(3,6,9)(10,16,13)(12,15,18), (1,4,7)(2,5,8)(3,6,9)(10,13,16)(11,14,17)(12,15,18), (1,7,4)(2,8,5)(3,9,6)(10,13,16)(11,14,17)(12,15,18), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18), (1,17)(2,16)(3,15)(4,14)(5,13)(6,12)(7,11)(8,10)(9,18) );

G=PermutationGroup([[(1,7,4),(2,5,8),(10,16,13),(11,14,17)], [(2,8,5),(3,6,9),(10,16,13),(12,15,18)], [(1,4,7),(2,5,8),(3,6,9),(10,13,16),(11,14,17),(12,15,18)], [(1,7,4),(2,8,5),(3,9,6),(10,13,16),(11,14,17),(12,15,18)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18)], [(1,17),(2,16),(3,15),(4,14),(5,13),(6,12),(7,11),(8,10),(9,18)]])

G:=TransitiveGroup(18,171);

On 27 points - transitive group 27T146
Generators in S27
(2 8 5)(3 6 9)(10 13 16)(12 18 15)(19 22 25)(21 27 24)
(1 7 4)(2 12 21)(3 25 10)(5 15 24)(6 19 13)(8 18 27)(9 22 16)(11 17 14)(20 26 23)
(1 4 7)(2 5 8)(3 6 9)(10 13 16)(11 14 17)(12 15 18)(19 22 25)(20 23 26)(21 24 27)
(1 14 26)(2 15 27)(3 16 19)(4 17 20)(5 18 21)(6 10 22)(7 11 23)(8 12 24)(9 13 25)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)
(2 9)(3 8)(4 7)(5 6)(10 18)(11 17)(12 16)(13 15)(19 24)(20 23)(21 22)(25 27)

G:=sub<Sym(27)| (2,8,5)(3,6,9)(10,13,16)(12,18,15)(19,22,25)(21,27,24), (1,7,4)(2,12,21)(3,25,10)(5,15,24)(6,19,13)(8,18,27)(9,22,16)(11,17,14)(20,26,23), (1,4,7)(2,5,8)(3,6,9)(10,13,16)(11,14,17)(12,15,18)(19,22,25)(20,23,26)(21,24,27), (1,14,26)(2,15,27)(3,16,19)(4,17,20)(5,18,21)(6,10,22)(7,11,23)(8,12,24)(9,13,25), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27), (2,9)(3,8)(4,7)(5,6)(10,18)(11,17)(12,16)(13,15)(19,24)(20,23)(21,22)(25,27)>;

G:=Group( (2,8,5)(3,6,9)(10,13,16)(12,18,15)(19,22,25)(21,27,24), (1,7,4)(2,12,21)(3,25,10)(5,15,24)(6,19,13)(8,18,27)(9,22,16)(11,17,14)(20,26,23), (1,4,7)(2,5,8)(3,6,9)(10,13,16)(11,14,17)(12,15,18)(19,22,25)(20,23,26)(21,24,27), (1,14,26)(2,15,27)(3,16,19)(4,17,20)(5,18,21)(6,10,22)(7,11,23)(8,12,24)(9,13,25), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27), (2,9)(3,8)(4,7)(5,6)(10,18)(11,17)(12,16)(13,15)(19,24)(20,23)(21,22)(25,27) );

G=PermutationGroup([[(2,8,5),(3,6,9),(10,13,16),(12,18,15),(19,22,25),(21,27,24)], [(1,7,4),(2,12,21),(3,25,10),(5,15,24),(6,19,13),(8,18,27),(9,22,16),(11,17,14),(20,26,23)], [(1,4,7),(2,5,8),(3,6,9),(10,13,16),(11,14,17),(12,15,18),(19,22,25),(20,23,26),(21,24,27)], [(1,14,26),(2,15,27),(3,16,19),(4,17,20),(5,18,21),(6,10,22),(7,11,23),(8,12,24),(9,13,25)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27)], [(2,9),(3,8),(4,7),(5,6),(10,18),(11,17),(12,16),(13,15),(19,24),(20,23),(21,22),(25,27)]])

G:=TransitiveGroup(27,146);

39 conjugacy classes

class 1  2 3A3B3C3D3E3F···3K3L···3T6A···6H9A···9I
order12333333···33···36···69···9
size127112223···36···627···2718···18

39 irreducible representations

dim11112222366
type+++++
imageC1C2C3C6S3S3C3xS3C3xS3He3:C2C9:C6C34.7S3
kernelC34.7S3C34.C3C32:2D9C32:C9C3x3- 1+2C34C3xC9C33C32C32C1
# reps112231621236

Matrix representation of C34.7S3 in GL6(F19)

7000012
0110001
001000
0007012
0000111
000001
,
100007
070000
0011008
000107
0000118
000007
,
1100008
0110008
0011008
000700
000070
000007
,
700000
070000
007000
000700
000070
000007
,
00111208
1001207
0101207
0001217
0001207
0001307
,
0018100
0018010
0018000
1018000
0118000
0010001

G:=sub<GL(6,GF(19))| [7,0,0,0,0,0,0,11,0,0,0,0,0,0,1,0,0,0,0,0,0,7,0,0,0,0,0,0,11,0,12,1,0,12,1,1],[1,0,0,0,0,0,0,7,0,0,0,0,0,0,11,0,0,0,0,0,0,1,0,0,0,0,0,0,11,0,7,0,8,7,8,7],[11,0,0,0,0,0,0,11,0,0,0,0,0,0,11,0,0,0,0,0,0,7,0,0,0,0,0,0,7,0,8,8,8,0,0,7],[7,0,0,0,0,0,0,7,0,0,0,0,0,0,7,0,0,0,0,0,0,7,0,0,0,0,0,0,7,0,0,0,0,0,0,7],[0,1,0,0,0,0,0,0,1,0,0,0,11,0,0,0,0,0,12,12,12,12,12,13,0,0,0,1,0,0,8,7,7,7,7,7],[0,0,0,1,0,0,0,0,0,0,1,0,18,18,18,18,18,10,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1] >;

C34.7S3 in GAP, Magma, Sage, TeX

C_3^4._7S_3
% in TeX

G:=Group("C3^4.7S3");
// GroupNames label

G:=SmallGroup(486,147);
// by ID

G=gap.SmallGroup(486,147);
# by ID

G:=PCGroup([6,-2,-3,-3,-3,-3,-3,1190,548,338,867,735,3244]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^3=b^3=c^3=d^3=f^2=1,e^3=c,a*b=b*a,a*c=c*a,a*d=d*a,e*a*e^-1=a*c^-1,a*f=f*a,b*c=c*b,e*b*e^-1=b*d=d*b,f*b*f=b^-1,c*d=d*c,c*e=e*c,f*c*f=c^-1,d*e=e*d,d*f=f*d,f*e*f=c^-1*e^2>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<